来源 |同济智能汽车研究所(定位与规控研究室)
知圈 | 进“滑板底盘群”请加微yanzhi-6,备注底盘
,,皇冠登1登2登3(www.m10086.vip)实时更新发布最新最快最有效的登1登2登3代理网址,包括新2登1登2登3代理手机网址,新2登1登2登3代理备用网址,皇冠登1登2登3代理最新网址,新2登1登2登3代理足球网址,新2网址大全。
编者按:高精度定位模块作为智能网联车辆的核心技术之一,为环境感知、决策规划、运动控制等提供了重要的参数信息,是自动驾驶的重要支撑。智能网联汽车搭载多种类型的传感器,如全球导航卫星系统(Global Navigation Satellite System, GNSS)、惯性测量单元(Inertial Measurement Unit, IMU)、摄像头等,为车辆定位系统提供了多种信息源。近年来利用多传感器融合进行组合定位实现可靠的位姿估计是当下的研究热点,其中视觉惯性里程计以性能互补特性被广泛应用。但是在城市峡谷等复杂地区中,GNSS信号易被遮挡导致定位信息不够精确。本文基于此提出了一种应对城市复杂地区GNSS信号被遮挡情况下的融合定位系统,通过分析不可观测子空间得到系统设计的有效性,并通过在城市地区收集的开源基准数据集和广泛的真实驾驶数据集,验证了所提出的方法。
编者按:高精度定位模块作为智能网联车辆的核心技术之一,为环境感知、决策规划、运动控制等提供了重要的参数信息,是自动驾驶的重要支撑。智能网联汽车搭载多种类型的传感器,如全球导航卫星系统(Global Navigation Satellite System, GNSS)、惯性测量单元(Inertial Measurement Unit, IMU)、摄像头等,为车辆定位系统提供了多种信息源。近年来利用多传感器融合进行组合定位实现可靠的位姿估计是当下的研究热点,其中视觉惯性里程计以性能互补特性被广泛应用。但是在城市峡谷等复杂地区中,GNSS信号易被遮挡导致定位信息不够精确。本文基于此提出了一种应对城市复杂地区GNSS信号被遮挡情况下的融合定位系统,通过分析不可观测子空间得到系统设计的有效性,并通过在城市地区收集的开源基准数据集和广泛的真实驾驶数据集,验证了所提出的方法。
摘要:在这篇文章中,我们提出了一种新的方法,以融合具有挑战性的城市环境中陆地车辆的视觉惯性测量,在这种环境中,GNSS信号既不可用也不可靠。受MEMSIMU大偏差导致的退化情况的激励,我们在扩展卡尔曼滤波器的框架内重新设计了视觉惯性里程计的系统模型。特别地,系统模型通过由三轴陀螺仪、两轴加速计和单轴里程表组成的简化惯性传感器系统传播。分析可观测性推导揭示了我们估计器的不可观测基础,这些方向通过使用GNSS接收机的间歇性位置测量来解决。此外,我们在蒙特卡洛模拟中检查了状态向量的不确定性,这与我们的理论结果一致。通过KITTI基准数据集和广泛的现场测试验证了所提出的方法,显示隧道中的平均位置漂移为1.25%,街道峡谷中6.7km的平均位置误差为2.81m。